Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37240451

ABSTRACT

Mutations in the GBA1 gene, encoding the lysosomal enzyme glucocerebrosidase (GCase), cause Gaucher disease (GD) and are the most common genetic risk factor for Parkinson's disease (PD). Pharmacological chaperones (PCs) are being developed as an alternative treatment approach for GD and PD. To date, NCGC00241607 (NCGC607) is one of the most promising PCs. Using molecular docking and molecular dynamics simulation we identified and characterized six allosteric binding sites on the GCase surface suitable for PCs. Two sites were energetically more preferable for NCGC607 and located nearby to the active site of the enzyme. We evaluated the effects of NCGC607 treatment on GCase activity and protein levels, glycolipids concentration in cultured macrophages from GD (n = 9) and GBA-PD (n = 5) patients as well as in induced human pluripotent stem cells (iPSC)-derived dopaminergic (DA) neurons from GBA-PD patient. The results showed that NCGC607 treatment increased GCase activity (by 1.3-fold) and protein levels (by 1.5-fold), decreased glycolipids concentration (by 4.0-fold) in cultured macrophages derived from GD patients and also enhanced GCase activity (by 1.5-fold) in cultured macrophages derived from GBA-PD patients with N370S mutation (p < 0.05). In iPSC-derived DA neurons from GBA-PD patients with N370S mutation NCGC607 treatment increased GCase activity and protein levels by 1.1-fold and 1.7-fold (p < 0.05). Thus, our results showed that NCGC607 could bind to allosteric sites on the GCase surface and confirmed its efficacy on cultured macrophages from GD and GBA-PD patients as well as on iPSC-derived DA neurons from GBA-PD patients.


Subject(s)
Gaucher Disease , Parkinson Disease , Humans , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Molecular Docking Simulation , Gaucher Disease/drug therapy , Gaucher Disease/genetics , Cell Culture Techniques , Binding Sites , Glycolipids , Mutation
2.
Int J Mol Sci ; 23(16)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36012146

ABSTRACT

Hypercytokinemia, found in SARS-CoV-2 infection, contributes to multiple organ dysfunctions with acute respiratory distress syndrome, shock etc. The aim of this study was to describe cytokine storm signatures in patients with acute COVID-19 and to investigate their influence on severity of the infection. Plasma levels of 47 cytokines were investigated in 73 patients with moderate and severe COVID-19 (41 and 32, respectively) and 11 healthy donors (HD). The most elevated levels comparing patients and the HD were observed for seven pro-inflammatory cytokines (IL-6, IL-8, IL-15, IL-18, IL-27, IFNγ, TNFα), three chemokines (GROα, IP-10, MIG), two anti-inflammatory cytokines (IL-1RA, IL-10), and two growth factors (G-CSF, M-CSF). The patients with severe disease had significantly higher levels of FGF-2/FGF-basic, IL-1ß, and IL-7 compared to the HD. The two groups of patients differed from each other only based on the levels of EGF, eotaxin, and IL-12 p40. Pneumonia lung injury, characterized by computer tomography, positively correlated with levels of EGF, IP-10, MCP-3 levels and negatively with IL-12 p40. Pro-inflammatory factors including IL-6, TNFα, and IP-10 negatively correlated with the frequency of the circulating T-helper17-like cells (Th17-like) and follicular Th cells that are crucial to develop SARS-CoV-2-specific plasma cells and memory B cells. Obtained data on the cytokine levels illustrate their influence on progression and severity of COVID-19.


Subject(s)
COVID-19 , Cytokine Release Syndrome , Chemokine CXCL10 , Cytokines/metabolism , Epidermal Growth Factor , Humans , Interleukin-12 , Interleukin-6 , SARS-CoV-2 , Tumor Necrosis Factor-alpha
3.
Viruses ; 13(10)2021 09 30.
Article in English | MEDLINE | ID: mdl-34696395

ABSTRACT

BACKGROUND: The immunological changes associated with COVID-19 are largely unknown. METHODS: Patients with COVID-19 showing moderate (n = 18; SpO2 > 93%, respiratory rate > 22 per minute, CRP > 10 mg/L) and severe (n = 23; SpO2 < 93%, respiratory rate >30 per minute, PaO2/FiO2 ≤ 300 mmHg, permanent oxygen therapy, qSOFA > 2) infection, and 37 healthy donors (HD) were enrolled. Circulating T- and B-cell subsets were analyzed by flow cytometry. RESULTS: CD4+Th cells were skewed toward Th2-like phenotypes within CD45RA+CD62L- (CM) and CD45RA-CD62L- (EM) cells in patients with severe COVID-19, while CM CCR6+ Th17-like cells were decreased if compared with HD. Within CM Th17-like cells "classical" Th17-like cells were increased and Th17.1-like cells were decreased in severe COVID-19 cases. Circulating CM follicular Th-like (Tfh) cells were decreased in all COVID-19 patients, and Tfh17-like cells represented the most predominant subset in severe COVID-19 cases. Both groups of patients showed increased levels of IgD-CD38++ B cells, while the levels of IgD+CD38- and IgD-CD38- were decreased. The frequency of IgD+CD27+ and IgD-CD27+ B cells was significantly reduced in severe COVID-19 cases. CONCLUSIONS: We showed an imbalance within almost all circulating memory Th subsets during acute COVID-19 and showed that altered Tfh polarization led to a dysregulated humoral immune response.


Subject(s)
B-Lymphocyte Subsets/immunology , COVID-19/immunology , Immunity , SARS-CoV-2 , ADP-ribosyl Cyclase 1 , Adult , Aged , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Female , Flow Cytometry , Humans , Immunoglobulin D , Male , Middle Aged , Oxygen , Receptors, CCR6 , T-Lymphocytes/metabolism , Th17 Cells/immunology
4.
Viruses ; 13(5)2021 04 27.
Article in English | MEDLINE | ID: mdl-33925492

ABSTRACT

New investigation results point to the potential participation of extracellular vesicles (EVs) in the pathogenesis of coronavirus infection, its progression, and mechanisms of the therapy effectiveness. This dictates the necessity to transfer scientific testing technologies to medical practice. Here, we demonstrated the method of phenotyping and quantitative analysis of plasma EVs based on differential centrifugation, immunostaining, and high-sensitivity multicolor flow cytometry. We used EV markers that were potentially associated with SARS-CoV-2 dissemination via vesicles and cell-origination markers, characterizing objects from different cell types that could influence clinical manifestation of COVID-19. Plasma levels of CD235a+ and CD14+ EVs in patients with moderate infection were significantly increased while CD8+ and CD19+ EVs were decreased comparing with HD. Patients with severe infection had lower levels of CD4+, CD19+, and CD146+ EVs than HD. These findings demonstrate that EV concentrations in COVID-19 are severity related. Moreover, the three-point dynamic assessment demonstrated significant loss of CD63+ and CD147+ plasma EVs. The used method can be a convenient tool for vital infection pathogenesis investigation and for COVID-19 diagnostics.


Subject(s)
COVID-19/diagnosis , COVID-19/therapy , Extracellular Vesicles/metabolism , Flow Cytometry/methods , Aged , Antigens, CD/blood , Biomarkers , COVID-19/virology , Exosomes , Humans , Middle Aged , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL
...